

MAN-003-001607

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2018 Chemistry : 602

(Organic Chemistry & Spectroscopy) (New Course)

> Faculty Code : 003 Subject Code : 001607

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) Total three questions, all are compulsory.

- (2) The figures to the right side indicate the marks of the sub-question.
- 1 Answer the following questions: (in short)

20

- (1) Write the structure of Acidic amino acid.
- (2) Write ninhydrine test for proteins.
- (3) Write structure of Hippuric acid.
- (4) Write the structure of P.E.T.N.
- (5) Complete the reaction:

(6) Complete the reaction (Sulphonation)

(7) Complete the reaction

- (8) Write structure of twisted boat form of cyclo hexane.
- (9) α -amino acid + $Cu^{+2} \xrightarrow{\Delta}$

- (10) Give reaction when Diphenyl methane heated through red hot iron.
- (11) Which Nuclei will give NMR spectra?
- (12) Give structural formula of compound which give rise to only two NMR signal.
 - (i) C_3H_6O
 - (ii) $C_{10}H_{10}O_4$
- (13) How many signals are obtained from cis-1,3 dibromo 1,3-dimethyl cyclobutane in NMR spectra.
- (14) Which type of solvent is used for taking NMR spectra? Give two names.
- (15) Arrange chemical shift δ_{ppm} in ascending order. Benzene, Methane, Ethylene, Cyclopropane.
- (16) Why ¹³C shows NMR spectra?
- (17) Which information we get from IR, NMR and Mass spectroscopy individually?
- (18) How can we predict whether the given compound is aromatic or not by PMR-spectra?
- (19) What is parent peak in mass spectra?
- (20) How many minimum carbons are required for Mc-Lafferty rearrangement?
- **2** (a) Answer any three from the following:

- 6
- (1) Give synthesis of oxalic acid from citral.
- (2) Define isoelectric point.
- (3) Give synthesis of terabic acid.
- (4) What is amino acid? Give reaction of amino acid with sodalime.
- (5) Explain Friedel-Crafts alkylation and acylation of naphthalene.
- (6) Write the structure of Baygon and Cyclonite.

(b) Answer any three from the following:

9

- (1) Give synthesis of phthalic acid from potassium phthalate.
- (2) Give synthesis of carbendazin from o-phenylenediamine.
- (3) Give synthesis of parathion.
- (4) Give synthesis of anthra quinone from 1,3-butadine.
- (5) Explain conformations of cyclopentane.
- (6) Explain synthesis of naphthalene by Haworth reaction.
- (c) Answer any two from the following:

10

- (1) Explain synthesis of anthracene.
- (2) Give synthesis of musk xylene and musk ketone and give its uses.
- (3) Explain chemical properties of amino acid (any five)
- (4) Write any three methods for preparation of polypeptides.
- (5) Give constitution of 3,7-dimethyl 2,6-diene octanal.
- 3 (a) Answer any three from the following:

6

- (1) Define equivalent and non-equivalent protons.
- (2) Give principle of mass spectroscopy.
- (3) How many kinds of hydrogen are present in the following compounds?
 - (i) CH_2 -CH= CH_2

(4) Explain Geminal proton and Vicinal proton.

- (5) Which information is obtained from the splitting of signal? Give one example.
- (6) How will you distinguish methyl benzoate and phenyl acetic acid with the help of NMR spectra (only signal and δ value).
- (b) Answer any three from the following:

9

- (1) Give possible isomers of dibromo propane and give no. of NMR signals.
- (2) Distinguish the compound by NMR spectra : n-propyl benzene and isopropyl benzene.
- (3) Explain Mc. Lafferty rearrangement.
- (4) Explain shielding and deshielding effect in NMR spectra.
- (5) Discuss importance of TMS in NMR spectra.
- (6) Find out structural formula from following NMR data:

M.F. =
$$C_4H_8O_2$$
 NMR a triplet δ = 1.05 3H b triplet δ = 4.15 2H c multiplet δ = 1.80 1H d singlet δ = 9.1 1H

(c) Answer any two from the following:

10

- (1) Explain factor affecting on chemical shift.
- (2) Explain Enantiomeric and Diastereomeric protons.
- (3) Assign the structure from the following data : Molecular Formula = $C_{10}H_{12}O_2$

 $IR = 3077, 2976, 1745, 1608, 1490 \text{ and } 1450 \text{ cm}^{-1}$

NMR = a
$$\tau_{ppm} = 2.7$$
 singlet (16.50 sq.)
b $\tau_{ppm} = 5.7$ triplet (6.20 sq.)
c $\tau_{ppm} = 7.07$ triplet (6.7 sq.)
d $\tau_{ppm} = 7.98$ singlet (10.20 sq.)

(4) Assign the structure from the following data:

$$M.F. = C_8H_8Br_2$$

IR = 3080, 1640, 1580, 1405, 1215, 930, 720 and $690~{\rm cm}^{-1}$

NMR = a doublet
$$\delta_{ppm} = 4.0 \text{ 1H}$$

- b doublet $\delta_{ppm} = 4.1 \text{ 1H}$
- c doublet of doublet $\delta_{ppm} = 5.1 \text{ 1H}$
- d Singlet $\delta_{ppm} = 7.4$ 5H
- (5) Assign the structure from the following data:

Mole. wt. = 240 gram/mol.

$$C = 80\%, H = 8.34\%, N = 11.66\%$$

IR = 3010, 2955, 1610, 1585, 1330, 1305, 1230, 1180, 1100 and 830 cm^{-1}

NMR = a singlet
$$\delta_{ppm} = 3.1 \ 12 \ H$$

b complex
$$\delta_{ppm} = 7.5 \text{ 8H}$$

Spectral Data

Infra - Red Data		
Alkene (strcteching)	-C-H	2850-2960(v)
Alkene	=C-H	3100-3200(m)
Alkyene	=C-H	3200-3300(s)
Aromatic	ArC-H	3010-3100(m)
Aromatic ring	C=C	1500-1600(v)
3		(two to three)
Alkene	>C=C<	1610-1680(v)
Alkyene	$-C=C^2$	2100-2260(s)
Alkene (Bending)	-C-H	1340(w)
(20120116)	$-C(C_2H_3)_3$	1430-1470(m) &
	0(021-3/3	1380-1385(s)
	-C(CH2)3	1365 (8)
Aldehyde	-C-H	2820-2000(w)&2650 2760(s)
Adehyde	C=O:	1740-1720(s)
Ketone	C=0	1725-1710(s)
Carboxylic acid	C=0	1/25-1705(s)
Ester	C=O	1750-1730(s)
Amide	C≐O	1670-1640(s)
	C=0	1810-1860(s)&1740-1790
Anhydride	C - -0	1810-1860(s)&1140-1150
Alecohols, Ethers, esters	le C-O	1000 1000(a)
Carboxylic acids, Anhydric	ie C-O	1300-1000(s)
Alcohols, phenols:	·	
Free	O·H	3650-3600(sh)
bonded	O-H	3500-3200(b)
Carboxylic acids free		•
Free	О-Н	3500-3650(m)
H-bonded	O-H	2500-3200(b)
amines (stretch)	N-H	3330-3500(m)
Bnding	-N-H	1640-1550(m)
Nitrile	-C=N	2210-2280(s)
Ether	0.	1070-1150(s)
Alkene bending	H H	-690(s)
disulstituted Cis.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. , ,
	H C=C H	
disulstituted Trans.	C=C_	960-970(s)
	/ - H	
Aromatic substitution:		
Type C-H out of plane ber	nding	
No. of adjacent H atom.	•	range cm
5	Mano Salbs	750(s) & 700(s)
4		→ 750 ± 2°
q ·		•
2	fwo bands) -> 7	10 7 750
1 Neta (LAND Danier 19	\$20 ± 20
1	para sub	
•		

NMR Data: Chemical Shift

Types of proton	Chemic	al shift in δ_{ppm}
Primary	R-CH _a	0.9
Secondary ·	R ₂ -CH ₃	1.3
Tertiary	R ₃ -CH	1.5
Vinylic	C=C·H	4.6-5.9
Acetylinic	Cr-C-H	2.3
Aromatic	Ar-H	6-8.5
Benzylic	Ar-C-H	2.2-3
Allylic	C=C-CH ₃	1.7
Florides	H-G-F	4-4.5
Chlorides	HC-Cl	3.4
Bromides	HC-Br	2.5-4
Iodides	HC-I	2.4
Alcohols	HC-OH	3.4-4
Ethers	HC-OR	3.3-4
Esters	R-COO-CH	3.7-4.1
Acids	HC-COOH	2-2.6
Carbonyl comp.	HC-C=O	2-2.7
Adehyde	R-CHO	9-10
Hydroxylic	R-OH	1-5.5
Phenolic	Ar-OH	4-12
Carboxylic	R-COOH	10.5-12
Amino	$R-NH_2$	1.5